


May 2003
Issue 10
Pages 1829-2000

Papers available ahead of print in Early View at www.interscience.wiley.com

Earliest available Table of Contents: Automatically, free of charge by e-mail through www.interscience.wiley.com/alerts

COVER PICTURE

The cover picture shows a schematic view of part of a novel complex that undergoes reversible dioxygen binding. The complex is a zig-zag oligomer formed in sublimed layers of [meso-triphenyl(4-pyridyl)porphyrinato]cobalt(II) and is depicted here with molecular dioxygen coordinated at each cobalt centre. The relatively open, microporous structure of the oligomer arises as a result of pyridine coordination, which inhibits closer-packed structures (e.g. with parallel contiguous porphyrin rings), and ensures facile transport of molecular oxygen to the coordination site. The zig-zag chain also inhibits the formation of dioxygen-bridged centres, with the result that this basic structure is relatively stable. On warming, the Co-dioxygen link may be broken, with the evolution of dioxygen, which can readily diffuse through the microporous structure, leaving the zig-zag oligomer chain effectively intact. Details are discussed in the article by T. S. Kurtikyan et al. on p. 1861 ff.

MICROREVIEW Contents

1843 L. Weber

The Quest for Isophosphaalkynes (Isophosphocyanides) $C \equiv P - R$ – Still an Elusive Class of Compounds

Keywords: Isophosphaalkynes / Phosphorus / Synthetic methods /